### GalaxyZoo Morphologies via ML

arXiv/0908.2033v1

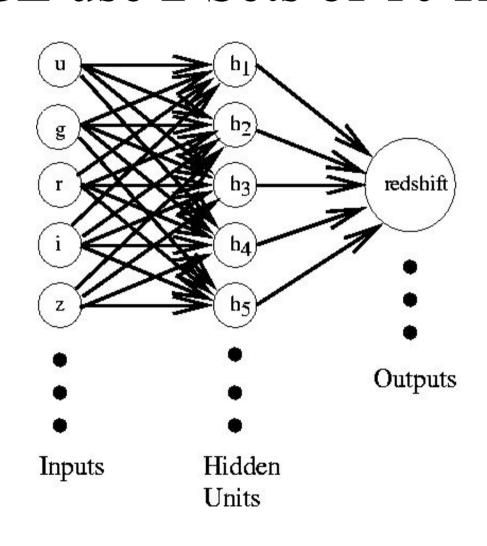
http://trotsky.arc.nasa.gov/~mway/gz.pdf

#### Objective

 About 1 million objects have been classified by eye via GalaxyZoo project

• The SDSS has 357 million objects yet to be classified

 Use the GalaxyZoo Catalog to classify objects via Artificial Neural Network regression


#### GalaxyZoo Catalog Info

- 3 Object types have been classified at the 90% success rate:
  - Spiral Galaxies
  - Elliptical Galaxies
  - Stars/Unique Objects
  - (Merger Class)

# We need a couple things to do the regression

- A Training Set
  - This is used to "train" the Neural Network
- The training set here is composed of:
  - The morphology classifications from GalaxyZoo
  - Colors, and concentration indices associated with profile-fitting
  - Adaptive shape parameters along with texture

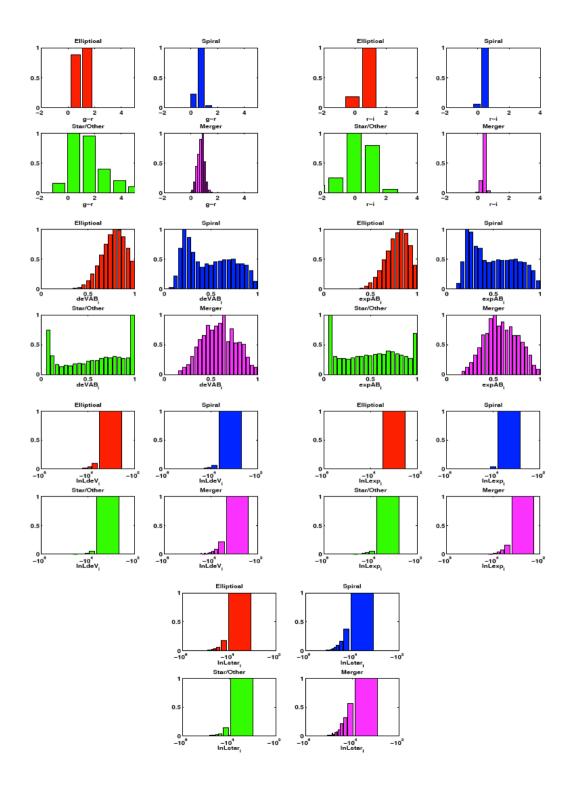
## Neural Network Training Diagram GZ use 2 Sets of 10 HU



- GalaxyZoo Sample 1:
- 893,212 objects classified into the 3(4) classes
- This sample is cleaned of objects that:
  - Are not detected in the g,r,i bands
  - have spurious values
  - have large errors
- The cleaning leaves ~800,000

- GalaxyZoo Sample 2 ("Bright Sample"):
- 893,212 objects classified into the 3(4) classes
- Take sub-sample with r<17
  - This is because fainter unresolved spirals are likely to be classified as ellipticals
- This "cleaning leaves" ~340,000

- GalaxyZoo Sample 3 ("Gold Sample"):
- Start with Sample 1 above (~800,000 objects)
- Require:
  - Weighted probability of being in any one of the 3 classes to be 0.8 (out of 1)
  - No mergers ("Class 4")
- This cleaning leaves ~315,000


#### First Set of Input Parameters

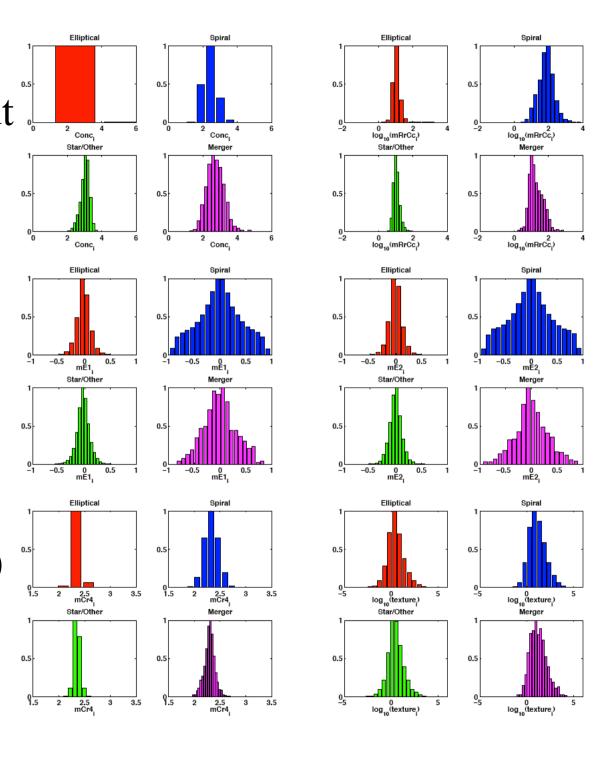
| Name                  | Description                         |
|-----------------------|-------------------------------------|
| dered_g-dered_r       | (g-r) colour                        |
| dered_r-dered_i       | (r-i) colour                        |
| deVAB_i               | DeVaucouleurs fit axis ratio        |
| expAB_i               | Exponential fit axis ratio          |
| lnLexp_i              | Exponential disk fit log likelihood |
| lnLdeV_i              | DeVaucouleurs fit log likelihood    |
| lnLstar_i             | Star log likelihood                 |
| petroR90_i/petroR50_i | Concentration                       |

- DeVaucouleurs describes variation in surface brightness of ellipticals
- Exponential describes disk component of spirals

First Set of Input parameters and their distributions for each of the 4 types of objects:

- Elliptical (red)
- Spiral (blue)
- Star (Green)
- Merger (Purple)




#### Second Set of Input Parameters

| Name                  | Description                  |
|-----------------------|------------------------------|
| petroR90_i/petroR50_i | Concentration                |
| mRrCc_i               | Adaptive $(+)$ shape measure |
| mE1_i                 | Adaptive E1 shape measure    |
| mE2_i                 | Adaptive E2 shape measure    |
| mCr4_i                | Adaptive fourth moment       |
| texture_i             | Texture parameter            |

- Conc. indices are used in both samples (petro90/50)
- 2<sup>nd</sup> moment of object intensity in row/column (mRrCc)
- Ellipticity components (mE1, mE2)
- Ratio of fluctuations in surf brightness of object to full dynamical range (=0 smooth profile, ≠0 for spiral arms)

Second Set of Input parameters and their distributions for each of the 4 types of objects:

- Elliptical (red)
- Spiral (blue)
- Star (Green)
- Merger (Purple)



- Each of the 3 training sets mentioned (800,000, 340,000 and 315,000)
  - First set of 8 input parameters
  - Second set of 6 input parameters
  - Conjoined 13 input parameters

#### How is the NN set up?

- GalaxyZoo Set 1 (800,000 objects)
  - 50,000 training (Larger samples don't help)
  - -25,000 validation
  - 725,000 (remainder) for testing?
- GalaxyZoo Set 2 (340,000 objects)
  - 50,000 training (Larger samples don't help)
  - -25,000 validation
  - 265,000 (remainder) for testing?
- Gold Sample (315,000 objects)
  - -50,000:25,000:240,000

#### Results – Merger Classification

- The Bad
  - low NN prob threshold (0.04-0.05)
  - 25% contaminants
  - 25% actual mergers discarded
  - training set isn't sufficiently good enough
    - Need a larger training set of visually classified mergers
  - DO NOT use? See arXiv:0903.4937v2

#### Results – Set 1 (800,000)

• The Good: Table 1 parameters

|            | Elliptical | Spiral | Star/Other |
|------------|------------|--------|------------|
| ELLIPTICAL | 88%        | 0.2%   | 0.3%       |
| SPIRAL     | 0.5%       | 88%    | 1.3%       |
| STAR/OTHER | 0.4%       | 0.5%   | 95%        |

• The Mediocre: Table 2 parameters

|            | Elliptical | Spiral | Star/Other |
|------------|------------|--------|------------|
| ELLIPTICAL | 84%        | 0.5%   | 85%        |
| SPIRAL     | 0.9%       | 86%    | 0.7%       |
| STAR/OTHER | 28%        | 7%     | 28%        |

• The Great: Table 1 + 2 parameters

|            | Elliptical | Spiral | Star/Other |
|------------|------------|--------|------------|
| ELLIPTICAL | 91%        | 0.08%  | 0.5%       |
| SPIRAL     | 0.1%       | 93%    | 0.2%       |
| STAR/OTHER | 0.3%       | 0.3%   | 96%        |

#### Results – Gold Sample (315,000)

• The Good: Table 1 parameters

|            | Elliptical | Spiral | Star/Other |
|------------|------------|--------|------------|
| ELLIPTICAL | 95%        | 0.4%   | 1.1%       |
| SPIRAL     | 0.3%       | 92%    | 0.9%       |
| STAR/OTHER | 0.04%      | 0.04%  | 85%        |

• The Almost Good: Table 2 parameters

|            | Elliptical | Spiral | Star/Other |
|------------|------------|--------|------------|
| ELLIPTICAL | 91%        | 0.7%   | 91%        |
| SPIRAL     | 0.6%       | 88%    | 0.5%       |
| STAR/OTHER | 0%         | 0%     | 0%         |

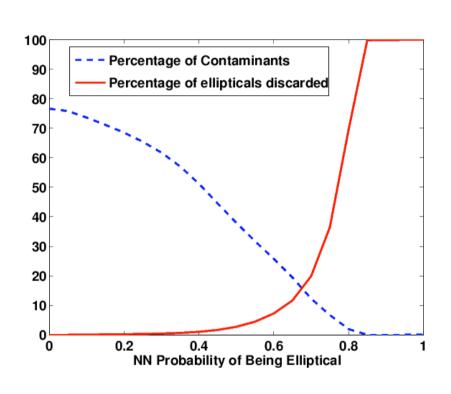
• The Great: Table 1 + 2 parameters

|            | Elliptical | Spiral | Star/Other |
|------------|------------|--------|------------|
| ELLIPTICAL | 97%        | 0.2%   | 1.2%       |
| SPIRAL     | 0.1%       | 96%    | 0.4%       |
| STAR/OTHER | 0.04%      | 0.01%  | 85%        |

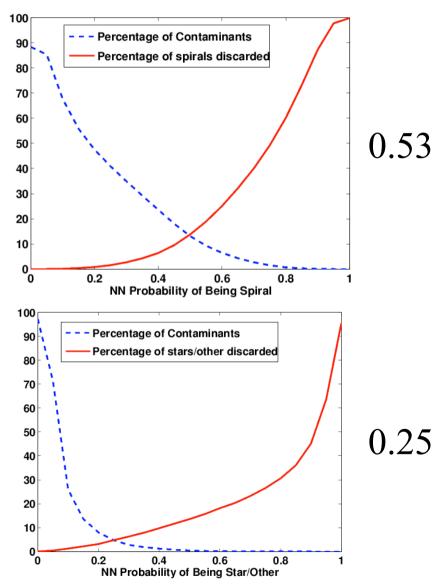
#### Results – Bright (340,000)

• The Great: Table 1 + 2 parameters

|            | Elliptical | Spiral | Star/Other |
|------------|------------|--------|------------|
| ELLIPTICAL | 93%        | 0.08%  | 0.4%       |
| SPIRAL     | 0.2%       | 96%    | 0.5%       |
| STAR/OTHER | 0.2%       | 0.2%   | 98%        |


- Training with Bright, Testing on Full 800,000
  - Checking for magnitude incompleteness

|            | Elliptical | Spiral | Star/Other |
|------------|------------|--------|------------|
| ELLIPTICAL | 92%        | 0.08%  | 1%         |
| SPIRAL     | 0.2%       | 96%    | 0.5%       |
| STAR/OTHER | 3%         | 0.2%   | 96%        |


#### Conclusions

- Able to reproduce the human classifications at the 90% level
  - This is by using the colors, profile fitting, and adaptive weighted fitting parameters (all 13)
  - This is comparable to GalaxyZoo volunteers compared to professional Astronomers!
  - Ellipticals have the highest optimal probability of belonging to their proper class (72%) minimizing both the percentage of contaminants and genuine objects discarded

### Contamination (13 inputs, Fig 6)



0.72

